Open Access Open Access  Restricted Access Subscription or Fee Access

Performance Evaluation of Autism Diagnosis Tool at Diverse Learning Rates

Vikas Khullar, Manju Bala

Abstract


Abstract: Artificial Neural Networks (ANN) has been considered as a major artifact in the scenario of Machine Learning, which needs optimization for more accurate and efficient results. The main aim of this paper is to identify the optimization techniques and their learning rates for ANN with better results. In this paper, we have been utilized “Keras” library for framing ANN with different optimization techniques. The evaluation of the optimization techniques has conducted on the basis of accuracy and loss as parameters. On the basis of our comparative study, we have proposed the best ANN optimization technique out of our evaluated techniques for the diagnosis of available Autism Spectrum Disorder (ASD) dataset.

Keywords – Artificial Neural Network, Optimization, Autism Spectrum Disorder.

Cite this Article

Vikas Khullar, Manju Bala, Harjit Pal Singh. Performance Evaluation of Autism Diagnosis Tool at Diverse Learning Rates. Journal of Artificial Intelligence Research & Advances. 2019; 6(2): 92–99p.


Full Text:

PDF

Refbacks

  • There are currently no refbacks.