

JoASP (2014) 1-8 © STM Journals 2014. All Rights Reserved Page 1

Journal of Advances in Shell Programming

Volume 1, Issue 1

www.stmjournals.com

An Approach to Design a Compiler in Context of Lexical

Analyzer (Scanner) and Parser Generation (Parser)

Followed by Non-optimized Intermediate Code

Generation using Compiler Construction Tools

Partha Ghosh
*

Department of Computer Science & Engineering, Govt. College of Engineering

& Ceramic Technology, Kolkata, India

Abstract
It is very tedious and lengthy task to write a compiler. To realize the various phases of
compilers we can use some specific tools. These tools are called compiler construction

tools. Furthermore, we call it as compiler-compiler, compiler-generators, or translator

writing system. A mixture of compiler building tools are Scanner generator —it generates
lexical analyzers. The patterns specified to these generators are in the type of regular

expressions. The LINUX has utility for a scanner generator called LEX. The specification

given to the LEX consists of regular expressions for representing various tokens. Parser
generators — these produce the syntax analyzer. The specification given to these

generators is given in the form of CFG. Typically LINUX has a tool called YACC, which
is a parser generator. Syntax-directed translation engines — in this tool the parse tree is

scanned fully to generate an intermediate code. The translation is done for each node of

the tree.

Keywords: Tokens, Lexeme, Lex, AST, Yacc

*Author for Correspondence E-mail: parth_ghos@rediffmail.com

INTRODUCTION
Compilation Sequence:

Source code sum=old sum + rate *80 Patterns

 Lexical Analyzer Lex

tokens < id1 assignment_op id2 add_op id3 mul_op integer_constant > Grammar

Syntax Analyzer YACC

Syntax Tree

 Assign op(=)

 id1 +

 id2 *

 (Semantic analyzer)

 id3 inttoreal num(80)

Code Generator

http://www.stmjournals.com/

 An Approach to Design a Compiler Partha Ghosh

JoASP (2014) 1-8 © STM Journals 2014. All Rights Reserved Page 2

Intermediate code t1=inttoreal(80) MOVF id3, R2

 t2=id3 * t1 MULF #80.0, R2

 t3=id2 + t2 MOVF id2, R1 (final code)

 id1=t3 ADDF R2, R1

 MOVF R1, id1

Fig. 1: Order of Compilation.

•The main job of a lexical analyzer (scanner) is to break up an input stream into more usable elements

called tokens [1]

a = b + c * d ;

ID ASSIGN ID PLUS ID MULT ID SEMI

 Source i/p

Regular

Expressions TOKENS

•Lex

•Lex [2–4] is an utility to help you rapidly

generate your scanners

•Lex source is a table of

–regular expressions and

–corresponding program fragments
e.g.,

digit [0-9]

letter [a-zA-Z]

%%
{letter}({letter}|{digit})* printf(“id: %s\n”, yytext);

\n printf(“new line\n”);

%%

main() {

 yylex();

}

The tokens are listed below. The bolded words

are the token class and the words between

quotes, " " are the lexemes [1].

Type "void", "int", "real"

Logical Operators "||", "&&", "!=", "==",

 "<", ">", "<=", ">="
Numerical Operators "+", "-", "*", "/", "="

Punctuation "{", "}", "(", ")", ",", ";"

Keywords "if", "else", "while", "do", "for"

Real

Plus or minus followed by a number of digits

followed by a dot ".", followed by a number of

digits. Either the sequence before the dot can

be null or the sequence after the dot can be

null, but not both.

For example (type, “void”) and (Punctuation,

“(“) are tokens.

•Yacc [2],[3],[4]

–Yacc generates C code for syntax analyzer, or

 parser.

–Yacc uses grammar rules that allow it to

 analyze tokens

 from Lex and create a syntax tree.

WORKING PRINCIPLE OF LEX:

LEXER GENERATION
The patterns in the above Figure 1 are a file

we create with a text editor. Lex will interpret

this patterns and generate C code for a lexical

analyzer or scanner. The lexical analyzer

matches strings in the input, based on our

patterns, and converts the strings to tokens.

Tokens are numerical representations of

strings, and simplify processing.

Lex source lex.yy.c

Program

Scanner

Generator
Scanner

Parser

Generator
Parser BNF

TOKENS

Parse

Tree

Lex

 Journal of Advances in Shell Programming

 Volume 1, Issue 1

JoASP (2014) 1-8 © STM Journals 2014. All Rights Reserved Page 3

Lexical analyzer enters identifiers in a symbol

table from input stream. supplementary

information such as data type (integer or real)

and location of each variable in memory are

also maintained in the symbol. All ensuing

references to identifiers refer to the proper

symbol table index.

lex.yy.c a.out

input stream sequence of tokens

Lex Source

•Lex source is separated into three sections by

%% delimiters

•The general format of Lex source is

 A lex specification consists of three parts:

regular definitions, C declarations in

 %{ %}

 %%
 translation rules

 %%
 user-defined auxiliary procedures

 The translation rules are of the form:

regexp <one or more blanks> { actions (C

code) }

p1 {action1}

p2 {action
2
}

…
pn {action

n
}

•The absolute minimum Lex program is thus

%%

Extended Regular Expressions of LEX

•A regular expression matches a set of strings

Character Classes []

•[abc] matches a single character, which may

be a, b, or c

•Every operator meaning is ignored except \ -

and ^

•e.g.

[ab] => a or b

[a-z] => a or b or c or…or z

[-+0-9] => all the digits and the two signs

[^a-zA-Z] => any character which is not a

 letter.

Arbitrary Character.

• The operator character (.) is used to match

almost character of all characters excluding

newline

• Octal 40 (blank) to octal 176 (tilde~) are

used to matches all printable characters in the

ASCII character set

Optional & Repeated Expressions

a? => zero or one instance of a

a* => zero or more instances of a

a+ => one or more instances of a

•E.g.

ab?c => ac or abc

[a-z]+ => all strings of lower case letters

[a-zA-Z][a-zA-Z0-9]* => all alphanumeric

strings with a leading alphabetic character

Precedence of Operators

•Level of precedence

–Kleene closure (*), ?, +

–concatenation

–alternation (|)

•All operators are left associative.

•Ex: a*b|cd* = ((a*)b)|(c(d*))

Lex Predefined Variables

yytext a string containing the lexeme .

yyleng the length of the lexeme

yyin the input stream pointer

–the default input of default main() is

stdin

yyout the output stream pointer

–the default output of default main() is

stdout.

 e.g.

[a-z]+ printf(“%s”, yytext);

[a-z]+ ECHO;

[a-zA-Z]+ {words++; chars += yyleng;}

The unmatched token is using default actions

that ECHO from the input to the output.

Lex Library Routines

yylex() – The default main() contains

 a call of yylex()

yymore() – return the next token

yyless(n) – retain the first n characters

 in yytext

yywarp() – is called whenever Lex

 reaches an end-of-file

C-compiler

a.out

 An Approach to Design a Compiler Partha Ghosh

JoASP (2014) 1-8 © STM Journals 2014. All Rights Reserved Page 4

– The default yywarp() always

 returns 1

WORKING PRINCIPLE OF YACC:

PARSER GENERATION
Backus Naur Form , BNF [5–7] are used to

express the grammar of yacc. To express

context-free languages BNF grammar can be

used.

For instance, the grammar intended for an

expression that multiplies and adds numbers is

E E + E

E E * E

E id

E, expression are nonterminals. Terms such as

id, identifier are terminals and only become

visible on the right-hand side of a production.

YACC File Format

... definitions ... --> definitions segment

 contains token declarations and C code

 bracketed by “%{“ and “%}”.

 %%

... rules...--> The BNF grammar is to be

 found in the rules segment

 %%

... subroutines ... --> user subroutines

Fig. 2: Communication between LEX and

YACC.

Definitions Section

%{

#include <stdio.h>

#include <stdlib.h>

%} It is a terminal

%token ID NUM

%start expr

Start Symbol

The first non-terminal specified in the

grammar specification section.

To overwrite it with %start declaraction.

%start non-terminal

Rules Section

This section defines grammar. Normally

written like this

 Example:

 expr : expr '+' term

 | term

 ;

 term : term '*' factor

 | factor

 ;

 factor : '(' expr ')'

 | ID

 | NUM

 ;

The Position of Rules

 $1 $2 $3

expr : expr '+' term { $$ = $1 + $3; }

 | term { $$ = $1; }

 ;

term : term '*' factor { $$ = $1 * $3; }

 | factor { $$ = $1; }

 ;

factor : '(' expr ')' { $$ = $2; }

 | ID

 | NUM

 ;

 Default: $$=$1;

Shift/Reduce Conflicts
It occurs when a grammar is written in such a

way that a decision between shifting and

reducing cannot be made.

 ex: IF-ELSE ambiguous.

To resolve this conflict, yacc will choose to

shift.

YACC Declaration

`%start` Specify the grammar's start

 symbol

`%union` Declare the collection of data

 types that semantic values

 may have

`%token` Declare a terminal symbol

 Journal of Advances in Shell Programming

 Volume 1, Issue 1

JoASP (2014) 1-8 © STM Journals 2014. All Rights Reserved Page 5

 (token type name) with no

 precedence or associativity

 specified

`%type` Declare the type of semantic

 values for a

non-terminal symbol

`%right` Declare a terminal symbol

 (token type name)

that is right-associative

`%left' Declare a terminal symbol

 (token type name) that is left-

 associative

`%nonassoc' Declare a terminal symbol

 (token type name) that is non-

 associative

(using it in a way that would be associative is

a syntax error, ex: x op. y op. z is syntax error)

Fig. 3: Lex with Yacc.

INPLEMENTATION APPROACH OF

ABSTRACT SYNTAX TREE: AST
Abstract Syntax Trees (AST)

In programming languages, we choose a

grammar that is close to the language

constructs. We call this grammar the abstract

grammar. The corresponding derivation tree is

called the abstract syntax tree. Each node is an

component of the language. Operators are

represented by non-leaf nodes while operands

are represented by the leaf nodes.

Example: Abstract Syntax Tree for p + q

where p is operand1 and q is operand2.

 +

 Operand1 Operand2

In parenthesized form, this might be written

as:

(+ (p q))

The production that relates to such a node is:

addop_expression mulop_expression {

addop mulop_expression }

If we create a data structure for the nodes of

the abstract syntax tree as:

then we can add attributes and functions such

as:

addop_expression --> mulop_expression

{addop mulop_expression }

addop_expression.NodePtr = MakeNode

addop_expression.Info = "+"

addop_expression.Left =

mulop_expression1.NodePtr

addop_expression.Right =

mulop_expression2.NodePtr

These statements might create an AST node

(pointed to by NodePtr) with “+” in the info

field and pointers to addop_ and

mulop_expression. We have to write the code

for make_node.

Yacc does have some built-in variables that

make this easier: $n refers to the value of the

nth symbol on the right hand side of the rule;

$$ refers to the value of the non-terminal

symbol on the left-hand side. Typically you

write $$ = f($1, $2, ...$m) next to the

production where f is a function written by me.

When we write $1, and that value has been

assigned via $$ in a previous production, the

value is passed up the tree.

 An Approach to Design a Compiler Partha Ghosh

JoASP (2014) 1-8 © STM Journals 2014. All Rights Reserved Page 6

For example,

addop_expr : addop_expr ADDOP

mulop_expr { $$ =

make_node("+",$1,$3); }

During parsing a node will be created, pointers

to the left and right will be entered into the

correct fields and “$$” will contain a pointer

to the current AST.

We will have to use, edit or write a “printtree”

function that will be called from our main

program after yacc has parsed and created the

tree, e.g.,

int main (void) {return yyparse ();} { …….. }

Intermediate Code generation

It uses the AST created before to generate

intermediate code.

EXPERIMENTAL RESULTS
Running lex program to generate the

scanner or Lexer:

In Lexical Analysis (Scanning) the following

occurs:

Step 1: a version of lex creating a Scanner that

 will recognize the tokens described

 there. It is essentially a C program.

[root@localhost]# lex lex.l

Now let's see what files are there:

[root@localhost]# ls

lex.l lex.yy.c

We can see that lex has created a C program

called lex.yy.c. This is our Scanner, but we

have to compile it first:

Step 2: Then the C compiler (cc), compiles

 this to create an executable scanner.

[root@localhost]# cc lex.yy.c -ll

[root@localhost]# ls

a.out lex.l lex.yy.c

a.out is the executable scanner.

Step 3: This scanner runs the input program

on the right producing a set of tokens.

[root@localhost]# ./a.out

39

integer

r3d2

Identifier

9rdr

positive integer

Identifier

Scanner Input:

#include <stdio.h>

#include <conio.h>

 void main()

 {

 int a,_b,3c,x,y;

 cslr();

 printf("Enter value of a\n"); /* value of a*/

 scanf("%d",&a);

 printf("Enter value of b\n");

 scanf("%d",&b);

 x=a&b;

 x=(a>b)?a:b;

 y=a|b;

 if((a>b)||(b>5))

 c=a-b;

 else

 c=b-a //subtractinging of values

 printf("Result is %d",c); //printing the result

 getch();

 }

Output:

#include<stdio.h> is a PREPROCESSOR

 DIRECTIVE

#include<conio.h> is a PREPROCESSOR

 DIRECTIVE

NEW LINE

NEW LINE

void is a KEYWORD

FUNCTION CALL OR DEFINITION main()

NEW LINE

BLOCK BEGINS

NEW LINE

Int is a KEYWORD

a is an IDENTIFIER,

_b is a illegal word,

3c is a illegal word,

x is an IDENTIFIER,

y is an IDENTIFIER;

NEW LINE

FUNCTION CALL OR DEFINITION cslr();

NEW LINE

FUNCTION CALL OR DEFINITION printf(

“Enter value of a\n” is a STRING);

/* value of a */ is a MULTI LINE COMMENT

NEW LINE

FUNCTION CALL OR DEFINITION scanf(

“%d” is a STRING,

& is a BITWISE OPERATOR

a is an IDENTIFIER

);

 Journal of Advances in Shell Programming

 Volume 1, Issue 1

JoASP (2014) 1-8 © STM Journals 2014. All Rights Reserved Page 7

NEW LINE

FUNCTION CALL OR DEFINITION printt (

“Enter value of b\n” is a STRING);

NEW LINE

FUNCTION CALL OR DEFINITION scanf(

“%d” is a STRING,

& is a BITWISE OPERATOR

b is an IDENTIFIER

);

NEW LINE

x is an IDENTIFIER

= is an ASSIGNMENT OPERATOR

a is an IDENTIFIER

& is a BITWISE OPERATOR

b is an IDENTIFIER;

NEW LINE

x is an IDENTIFIER

= is an ASSIGNMENT OPERATOR(

a is an IDENTIFIER

> is a RELATIONAL OPERATOR

b is an IDENTIFIER

)

?: is a TERNARY OPERATOR;

NEW LINE

y is an IDENTIFIER

= is an ASSIGNMENT OPERATOR

a is an IDENTIFIER

| is a BITWISE OPERATOR

b is an IDENTIFIER;

NEW LINE

NEW LINE

FUNCTION CALL OR DEFINITION if((

a is an IDENTIFIER

|| is a LOGICAL OPERATOR (

b is an IDENTIFIER

> is a RELATIONAL OPERATOR

5 is a NUMBER CONSTANT

)

)

NEW LINE

c is an IDENTIFIER

= is an ASSIGNMENT OPERATOR

a is an IDENTIFIER

- is an ARITHMETIC OPERATOR

b is an IDENTIFIER;

NEW LINE

else is a KEYWORD

NEW LINE

c is an IDENTIFIER

= is an ASSIGNMENT OPERATOR

b is an IDENTIFIER

- is an ARITHMETIC OPERATOR

a is an IDENTIFIER

//subtracting of va1ues is a SINGLE LINE

COMMENT NEW LINE

FUNCTION CALL OR DEFINITION printf(

“Result is %d” is a STRING,

c is an IDENTIFIER

);

//printing the result is a SINGLE LINE

COMMENT

NEW LINE

FUNCTION CALL OR DEFINITION getch(

);

NEW LINE

BLOCK ENDS

NEW LINE

Total, no of lines 22

Running lex and yacc program to generate

bottom-up parser:

As before, if the lex file is in a file named

lex.l, then we just type in

 [root@localhost]# lex lex.l

And, as before lex creates the file lex.yy.c.

Now we want yacc to create the parser from

our file which we’ll call ly.y. Type:

[root@localhost]# yacc –d ly.y

This creates a file called y.tab.c and the “-d”

creates a file of definitions called y.tab.h.

which when compiled produce our parser.

To compile:

[root@localhost]# cc y.tab.c lex.yy.c

which, as usual, creates the file a.out.

Running a.out

./a.out

2 + 3 * 4

(2 + 3) * 4

^C (exits) [correct]

YACC Parsing Input:

1+2-5+(5*22);

Output:

./a.out

3 2 + +

syntax error

^C (exits)

 An Approach to Design a Compiler Partha Ghosh

JoASP (2014) 1-8 © STM Journals 2014. All Rights Reserved Page 8

It is really hard to see the bottom-up parse

from the output; you should be able to create a

parse from the output (which is the reverse of

a leftmost derivation).

We will add semantic actions to create an

abstract syntax tree:

Yacc Parsing Input:

1+1;

4-5+7*8;

6-6*7+(9*16);

22-12*(23+45)*56;

Output:

(+ 1 1)

(+ (- 4 5)(* 7 8))

(+ (- 6 (* 6 7))(* 9 16))

(- 22 (* (* 12 (+ 23 45)) 56))

Now we will generateIntermediate Code:

Yacc Parsing Input:

22-12*(23+45)*56;

Output:

(-22 (* (* 12 (+ 23 45)) 56))

CONCLUSION
Processing time of FA proportional to the size

of the input file and not on the number of

regular expressions used. Although the

number of expressions may impact number of

internal states and therefore in space. Here we

use as much as possible regular expressions

and as little as possible action processing in C.

We use regular expressions more specific at

the beginning of the LEX file specification

(for example keyword) and more generic

regular expressions at the end (for example

identifiers). Further study on extending this

model with optimization of code and error

recovery in all phases of compiler is in steps

forward.

REFERENCES
1. Alfred V. Aho, Ravi Sethi, Jeffery D.

Ullman, Compilers- Principles,

Techniques, and Tools: Addison-Wesley;

2007.

2. William A. Barrett, Compiler Design,

CmpE 152, FALL Version, San Jose State

University; 2005.

3. G.M6nier, G. Lorette, Lexical Analyzer

based on a Self-Organizing Feature Map,

IEEE Xplore. 1997. 0-8186-7898-4.

4. Lex, Yacc, UNIX Programming/UNIX

Utilities. 2nd Edn; John R. Levine, Tony

Mason and Doug Brown–O’Reilly (Ed.):

ISBN 1-56592-000-7.

5. Jeffrey E.F. Friedl–O’Reilly, Mastering

Regular Expressions. 1997, ISBN: 1-

56592-257-3.

6. William M. Waite, Assad Jarrahian,

Michele H. Jackson, Amer Diwan, 2006.

Design and Implementation of a Modern

Compiler Course, ACM

1595930558/06/0006.

7. K.L.P. Mishra, N.Chandrasekharan,

Theory of Computer Science 2007, 3rd

Edn., PHI.

