

 JoASP (2014) 13-17 © STM Journals 2014. All Rights Reserved Page 13

Journal of Advances in Shell Programming

Volume 1, Issue 1

www.stmjournals.com

Open Flow Network Visualization Software

Vikas Bandaru
1
*, K. Nikitha

1
, B. Amrutha Rao

2

1
GITAM University, Hyderabad, Andhra Pradesh, India

2
Head Computer Networks Division, RCI, Hyderabad, Andhra Pradesh, India

Abstract
Traditional IP network infrastructure is merely static, rather than flexible. Due to the

advent of Cloud technologies, future networks of machine-to-machine

(M2M)/Internet of Things (IoT) and the mobile devices generating Big Data, it has

become very difficult for network managers to configure and monitor the ever-

changing network dynamically. Recently, the concept of Software-Defined Network

(SDN), which allows us to administer and configure a network in a centralized and

programmable manner, has gathered network engineers’ and researchers’ attention

rapidly. OpenFlow has opened the door for network management in a more

controlled way. Though OpenFlow controllers provide a lot of raw data collected

from the underlying flows, it is still difficult for network managers to do analysis of

that Big Data and take better decisions for the network. This research aims to realize

a visualization software that facilitates the network managers to analyze the flow

data in a more user-friendly way. The proposed tool helps us to visually identify

selected flows from all lists of flows (i.e., Flowspace) and to monitor the status of

selected flows through application-specific interactive visual representations.

Keywords: OpenFlow, software defined network, programmable network,

flow visualization, network management, open daylight

*Author for Correspondence E-mail: vikas.bandaaru@gmail.com

INTRODUCTION
Computer networks have become part of the

critical infrastructure of our businesses, home

and schools. Networks are typically built from

a large number of network devices such as

routers, switches and numerous types of

middle boxes (e.g., Firewall) with many

complex protocols implemented on them. The

behavior of the network depends on the

configuration of these thousands of constituent

network devices, each of which is configured

independently. Today network operators

implement high-level network tasks with low-

level configuration commands; operators

frequently make mistakes when making

changes to network configuration [1, 2].

However, there is a lot of research being

conducted in the field of programmable

networks after the emergence of the concept

called software-defined networking (SDN).

The designs for next-generation Internet

envision inherent flexibility and

programmability in the underlying network

infrastructure. OpenFlow, as an emerging tool

for SDNs, enables network innovations based

on commercial switching hardware by

separating the intelligent control plane from

data-path processing [3]. In general, an

OpenFlow network is usually composed of an

OpenFlow controller responsible for control

functions for handling network packets and

multiple OpenFlow-capable network switches.

OpenFlow protocol provides an open standard

to manage flow-tables in multi-vendor

network facilities. These switches and routers

communicate with the controller through the

OpenFlow protocol. Making use of the

protocol, a network administrator can partition

traffic into production and research flows.

SDN is also being researched for wireless

networks [4], emphasizing on wireless

personal area networks (WPANs).

In general, the operation of an OpenFlow

network requires the development of an

OpenFlow controller, so that the OpenFlow

controller as a software program can handle

flow-tables on OpenFlow-enabled network

switches and routers [5]. For this reason,

several kinds of development frameworks

http://www.stmjournals.com/

Open Flow Network Visualization Software Bandaru et al.

JoASP (2014) 13-17 © STM Journals 2014. All Rights Reserved Page 14

which facilitate us to code OpenFlow

controller, such as POX [6], Trema [7],

Floodlight [8] and OpenDaylight [9] have

been available.

Despite the existence of such frameworks, the

developer tends to have the following

difficulty. The difficulty lies in understanding

the topology of the entire OpenFlow network,

actual paths of the network flows, traffic

amount on each link of the network, types of

services/applications generating the traffic, the

amount of traffic being consumed by any

specific service/application on any specific

device and so forth.

Flow visualization, which gathers and shows

the information and behavior (e.g., network

topology, traffic statistics, network and device

configuration parameters, and others) of all the

flows in a network, extensively provides

useful insight about the underlying network.

Especially, flow visualization can help us

perform network management decisions based

on monitored network information.

To understand each flow better, we also need

to consider the related service(s) with their

applications. In this paper, the authors propose

an attempt, called as application-specific

interactive flow visualization in OpenFlow-

based programmable networks, which can

interactively map the flows onto applications.

The proposed tool helps us to visually identify

(i.e., separate) selected flows from all lists of

flows (i.e., Flowspace) and to monitor the

status of selected flows. That is, in order to

visualize flows with application mapping, we

attempt to classify a variety of Internet

applications/services into distinctive types and

to analyze each flow with the classified

distinctive types.

In this paper is reported a research work in

progress towards OpenFlow network

visualization software, which can facilitate to

efficiently control and monitor an OpenFlow

network. The rest of the paper is structured as

follows. In section Problem In Current

OpenFlow Visualization Software is reviewed

the issues with current OpenFlow visualization

software. In section Proposal of Our Work in

Progress is shown the OpenFlow network

visualization software which allows us to view

the topology of our target OpenFlow network

and operate flows on it with ease. The results

are concluded in section Conclusions.

PROBLEM CURRENT OPENFLOW

VISUALIZATION SOFTWARE
Gathering real-time statistics about the

network state through visualization can help us

perform network management decisions and

monitor network-related problems. Several

visualization systems have been designed in

the context of OpenFlow; however, such

systems are constrained by their fundamental

limitations. For example, LAVI [10] and NOX

GUI [11] have restricted towards visualizing

the network that are connected to a NOX

controller. Both systems lack generality to

work with other controllers. ENVI [12], the

frontend unit, communicates with LAVI by

requiring an intermediate binary to JSON

format translator. Such intermediate level of

abstraction requires significant development

time and making it hard to port when extended

to work with other OpenFlow-based

controllers.

ROVIZ [13] took the above problem into

consideration and contributed the following

solutions: (i) compatible with any OpenFlow-

based network, irrespective of the

controller(s), (ii) maintains real-time

information about the entire network as well as

individual devices, and (iii) provides

interactive menus for selective information

retrieval improving bandwidth constraints.

Application-aware aggregation, which just

depends on port-to-application mapping, is

time-consuming only with manual detection

for application awareness [14]. This is in some

extent solved by Shin and Kim [15] where the

services are subcategorized into three types: (i)

static port-based type, (ii) dynamic port-based

type, and (iii) unknown type. Even though

Shin and Kim [15] solved the problem to an

extent, it is not sufficient to monitor the

network and its traffic usage based on per

application on individual devices.

PROPOSAL OF OUR WORK IN

PROGRESS

For the consideration above, the authors have

been prototyping visualization software that

can give OpenFlow network managers an

 Journal of Advances in Shell Programming

 Volume 1, Issue 1

JoASP (2014) 13-17 © STM Journals 2014. All Rights Reserved Page 15

intuitive understanding of how network flows

are formed, what the topology of a physical

OpenFlow network is like, how much

bandwidth is being used by which applications

in which devices, dynamically add and remove

flow entries directly to the OpenFlow switches

via OpenFlow controller for experimentation

purposes with the implementation of flow

control interface [16].

Figure 1 overviews the architecture of the

proposed visualization software. The

visualization software under development is

composed of visualization module,

communication module built on top of an

OpenFlow controller, and OpenFlow switches.

The visualization module is in charge of a

User interface (UI) to the network manager,

visualizing a topology of the OpenFlow

network as a graph and then superimposing

network flow information on the graph. Also,

through the visualization module, the

managers can add and remove flow entries to

OpenFlow switches. The communication

module built on OpenFlow controller is

responsible for obtaining the information on

network from controller and mediating the

interaction between the manager UI and

OpenFlow switches. For the communication

between the communication module and

OpenFlow switches, OpenFlow protocol is

used. For the development of visualization

tool, authors have adopted Open Daylight,

which is a Java based OpenFlow controller,

focusing on the characteristics of enabling the

development of OpenFlow visualization tool

in Java.

Fig. 1: Overview of the Proposed Architecture.

A. Visualization Module

The visualization module has three

functionalities. The first functionality is to

visualize the topology of the target OpenFlow

network and superimpose the information on

network flows on it. The information

on network flows includes traffic amount on

each link between OpenFlow switches

composing the OpenFlow network, a list of

network flows, and individual flow

information as and when a specific flow is

selected. The second functionality is to show

the graphical representation of bandwidth

usage and traffic flow between devices as per

application. For visualization of network, the

authors have adopted Jung 2.0.1 (Java

Universal Network/Graph Framework) [17].

The third functionality is to allow the

developer to directly describe flow entry

parameters and add and remove flows.

Figure 2 shows the prototype diagram of the

visualization software under development.

B. Communication Module

The communication module consists of

Network Information Base. Network

information base collects the topology, flow

and link information from the underlying

network switches through the OpenDaylight

controller and communicates the same to

visualization module for graphical

representation. It makes the topology graph

database of the OpenFlow network devices by

utilizing LLDP (link layer discovery protocol),

a protocol for information exchange between

neighbor devices. The communication module

first instructs each OpenFlow switch to send

LLDP packets to all neighbors. A LLDP

packet contains the ID of the sender switch

and the ID of the port that it is sent through.

On receiving the LLDP packet from a

neighbor switch, OpenFlow switches report its

arrival to the communication module. With

this mechanism, the communication module

can obtain the information on all links and

then build the topology graph of the OpenFlow

network which OpenFlow switches form.

Furthermore, to understand the connections

between OpenFlow switches and hosts, the

communication module works as follows. In

the event that a new host is connected to an

OpenFlow switch and sends out any packet,

the event is informed to the communication

module built on the OpenFlow controller.

Then, the communication module extracts

source MAC address and IP address contained

in the packet. If their address is unknown to

Open Flow Network Visualization Software Bandaru et al.

JoASP (2014) 13-17 © STM Journals 2014. All Rights Reserved Page 16

the communication module, it adds the

corresponding connection between the

OpenFlow switch and the new host to the

graph obtained by the LLDP-based mechanism

above.

To obtain the information on network flows on

the OpenFlow network, the communication

module analyzes flow entry information

retrieved from each OpenFlow switch. The

flow entry information retrieved from an

OpenFlow switch contains only which port to

send out for a series of packets that matches a

rule set in advance. Furthermore, the

information is fragmentary and thus the

developer has difficulty in understanding the

entire network flows on the target OpenFlow

network. In the communication module,

“match,” “actions,” and “packet count” are

focused. In order to understand the network

flows on the OpenFlow network, the

communication module obtains the

information from each switch every one

second. Also, the traffic amount of each

network flow is estimated from the

comparison of “byte count” flowing on a

specific port between the information obtained

every one second.

The communication module also has the

ability to modify the actual path of a specified

flow. This is conducted by adding new flow

entries which override the flow entries of the

specified flow. Note that the modified path

will be reverted some time later because the

OpenFlow controller will refresh the flow

entries in the event of timeout.

C. OpenFlow Switch

As of writing this paper, we do not have

enough OpenFlow switches to make an

OpenFlow network. In this research, Open

vSwitch [18], [19] has been used for emulation

of OpenFlow switch. Open vSwitch is a

software implementation of an OpenFlow

switch intended to run as a virtual switch in

virtualized environments. Open vSwitch can

operate both as a software switch running

within the hypervisor, and as the control stack

for switching silicon. It has been ported to

multiple virtualization platforms and switching

chipsets. In this research, an OpenFlow

network has been constructed with Open

vSwitches on a Linux machine.

Fig. 2: (a) Traffic Flow between Switches and Nodes.

 (b) Add New Flow. (c) Sample Table in Database.

 Journal of Advances in Shell Programming

 Volume 1, Issue 1

 JoASP (2014) 13-17 © STM Journals 2014. All Rights Reserved Page 17

CONCLUSIONS
In this paper, the authors’ research work in

progress toward OpenFlow network

visualization software was reported. The

authors have focused on the difficulties in

developing an OpenFlow visualization tool

and thus started the development of OpenFlow

network visualization software for the purpose

of facilitating the managers’ monitoring of

OpenFlow network. At the time of writing this

paper, the software is still under development.

The s would like to improve the prototyped

visualization software obtaining the feedback

from actual developers and engineers working

around OpenFlow network.

REFERENCES
1. Feamster N, Balakrishnan H. Detecting

BGP Configuration Faults with Static

Analysis. Proceedings of 2nd USENIX

NSDI, Boston, MA, May, 2005.

2. Mahajan R, Wetherall D, Anderson T.

Understanding BGP misconfiguration.

ACM SIGCOMM, Pittsburgh, PA; Aug.

2002; 3–17p.

3. McKeown N, Anderson T, Balakrishnan

H, et al. OpenFlow: Enabling innovation

in campus networks. White Paper. March

2008.

4. Salvatore Costanzo, Laura Galluccio,

Giacomo Morabito, et al. Software defined

wireless networks: unbridling SDNs.

IEEE. 2012.

5. Furuichi T, Date S, Yamanaka H, et al. A

prototype of network failure avoidance

functionality for SAGE using OpenFlow.

IEEE 36th International Conference on

Computer Software and Applications

Workshops (The Sixth Middleware

Architecture in the Internet (MidArch

2012)). Jul. 2012; 88–93p.

6. POX, http://www.noxrepo.org/pox/about-

pox/.

7. Trema, http://trema.github.io/trema/.

8. Floodlight OpenFlow Controller – Project

Floodlight, http://www.projectfloodlight.o

rg/floodlight/.

9. Project OpenDaylight, http://www.openda

ylight.org/

10. Yap KK. Network Visualization.

http://www.openflowswitch.org/wk/index.

php/LAVI, May 2009.

11. Zarifis K. Nox gui. http://noxrepo.org/nox

wiki/index.php/NOX-GUI, October 2010.

12. Underhill DG. An extensible network

visualization and control framework.

Thesis. Stanford University, May 2009.

13. Natarajan S, Huang X. An interactive

visualization framework for next

generation networks. ACM CoNEXT. Nov,

2010.

14. Das S, Yakoumis Y, Parulkar G, et al.

Application-aware aggregation and traffic

engineering in a converged packet-circuit

network. OFC/NFOEC, March 2010.

15. Shin Sungho; Kim JongWon. Toward

service-aware flow visualization over

openflow-based programmable networks.

Asia-Pacific Advance Network. 2011; v.

32: 8–13p.

16. Watashiba Y, et al. OpenFlow Network

Visualization Software with Flow Control

interface. Computer Software and

Applications Conference, IEEE. 2013.

17. JUNG-Java Universal Network/Graph

Framework, http://jung.sourceforge.net/.

18. Pfaff B, Pettit J, Koponen T, et al.

Extending networking into the

virtualization layer. HotNets-VIII. 2009.

19. Open vSwitch, http://openvswitch.org/.

