

JoASP (2014) 1-2 © STM Journals 2014. All Rights Reserved Page 1

Journal of Advances in Shell Programming

Volume 1, Issue 3

www.stmjournals.com

Secure Two Party Computation

Ankush Rai*
Department of Applied Science, CRIAD Laboratories, Smiriti Nagar, Bhilai-490020, India

Abstract
The author investigated the flaws with two-party computation over a cloud or parallel

services for an encrypted data which can be easily accessed by any efficient shell
programmer. Generally, the computation with the slaves and the master enables the

store-to-store data locally, even that may be a constant amount of data and thereby we
have found that the third parties can remotely access the n amount of data items, while

ensuring that the identities of the items are kept hidden. Hence, in this short

communication the author presented a patched protocol for hidden scalable
computational environment to safeguard its computing data from outside interventions.

Keywords: Secure computational communication, encryption protocol

*Author for Correspondence E-mail: ankushressci@gmail.com

INTRODUCTION
There have been various attempts for

encryption of data storage already made and

for the most part this field has been saturated

for years [1–5]. Also, various encryption

algorithm have been in common use for

content encryption but apparently such

methods limit the encryption advantage to

only to and fro of data [6–8]. But for

environment like that of searchable encryption

in computing environment like that of cloud

computing or parallel computing or even

distributed computing the major setback that

we have discovered is the easy accessibility of

the computing data in the RAM using a clever

shell scripting to determine the data or service

usages that shall prove harmful to the other

applications and individuals dependent over it.

For example, whether data may or may not be

encrypted but the service made in the server by

the client will ultimately be used as monitoring

or tackling the details such as based on app

usage the web apps running on server can

classify individuals based on their habits

position, etc. Now, if one can configure the

shell of the client’s source to manipulate or

extract the data held for processing in the

RAM of the server or even of client can be

extracted to use for malicious purposes [9–13].

This is where the encryption in computation is

required which had been completely left off in

the previous studies [12–14]. As the handheld

embedded systems are increasing in

popularity, the major route to increase their

computing power is restricted to sharing off

hardware devices over a network but in due

process we forget that no matter what

algorithm it shall be used to encrypt but the

processor or the process in the computation is

left alone for the third parties to intervene

easily.

Now, the follow-up of the problem lies in the

fact that if we use each thread to encrypt, the

memory will overflow and thus will hinder

computation. Therefore, to avoid this case

scenario and also to use a methodology to

provide security to the shared computation, we

work on a real-world scenario of shared

computing specifically of that of stock-

exchange action in the following steps:

Consider that for a sequence of queries

namely, q1, q2, q3…qn, is meant to follow by

an action of the stock-exchange, thereby the

curious server can easily have the capacity to

learn about the content of queries, irrespective

of the fact of being it encrypted. More

importantly it can predict the action of user’s

preferences with the sequence of queries

appear over and over again in a familiar

pattern by counting the frequency of threads

processing to be threaded over RAM accessing

the same data items. Thus, the server at its

adversary can only prosecute the resources in

an attempt for decrypting only those data items

Secure Two Party Computation Rai Ankush

JoASP (2014) 1-2 © STM Journals 2014. All Rights Reserved Page 2

which are targeted excessively by the targeted

user, which adds an ability to the server to

frame a relation between user and its queries to

the server. Thus, for encryption of such data

leaks, we can follow certain steps as follows:

Initially, the data structure consists of data

requests kept empty. For each request (of any

type or process) of a register index (virtual

address), the following operations are required

to perform:

1. Scan through the entire first level in a

sequential order to find the item whose

register-index. This step includes reading

all the items in the first level. If the

requested item is found, it is stored in the

client’s secure memory, and the process

continues as usual.

2. For each level of operation, i = 2: N, do:

examine its two possible register index in

the hashing of the cache memory table of

the current level. Frame a dummy loop out

of hashing table to rearrange the memory

index in the register units by refreshing

dummy table from the dummy loop. This

requires almost no computational expense

to perform so and no sorting algorithm

will intervene in that environment.

3. Initiate scanning again all the way through

entire first level in a sequential order, and

write back the updated item of register-

index in the next available memory units.

CONCLUSIONS
This framework confuses the server to carry

out queries and understand the pattern without

adding or carrying out other computational

load, and is easily implementable all other

known constructions of RAM even the

oblivious ones. The data flows followed by

reshuffle of request in several levels does not

has any overheads than the one which is

requested and if any operation or attempts to

made to finding the pattern it will putt the

memory to a overload and lead the system to

crash. Thereby, providing a fully secured

privacy without any additional computation

than the ongoing one. The author hopes that

his work in this short communication will in

future provide a secure privacy of online

services especially those involved with

computing.

REFERENCES
1. Amazon Simple Storage Service (Amazon

S3). http://aws.amazon.com/s3/.

2. Ajtai M. Oblivious RAMs without

cryptographic assumptions. STOC. 2010.

3. Ajtai M, Kolm´os J, Szemer´edi E. An O(n

log n) sorting network. In STOC. 1983; 1-

9p.

4. Arbitman Y, Naor M, Segev G.

De-amortized Cuckoo hashing: Provable

worst-case performance and experimental

results. In ICALP (1); 2009; 107–18p.

5. Y Arbitman Y, Naor M, Segev G.

Backyard Cuckoo hashing: Constant

worst-case operations with a succinct

representation. Manuscript. 2010.

6. Batcher K. Sorting networks and their

applications. In AFIPS Spring Joint

Computing Conference. 1968; 32: 307–

14p.

7. Benes VE. Optimal rearrangeable

multistage connecting networks. Bell

System Technical Journal. 1964; 4.

8. Bloom BH. Space/time trade-offs in hash

coding with allowable errors.

Communications of the ACM. 1970; 13(7):

422–6p.

9. Cormen T, Leiserson C, Rivest R.

Introduction to Algorithms. McGraw Hill

and The MIT Press. 1990.

10. Damgard I, Meldgaard S, Nielsen JB.

Perfectly secure oblivious RAM without

random oracles. Cryptology ePrint

Archive. Report 2010/108, 2010.

http://eprint.iacr.org/2010/108.

11. Fan L, Cao P, Almeida J, et al. Summary

cache: A scalable wide-area web cache

sharing protocol. IEEE/ACM Transactions

on Networking (TON). 2000; 8(3): 293p.

12. Goldreich O. Towards a theory of software

protection and simulation by oblivious

RAMs. In STOC, ACM, 1987; 182–94p.

13. Iliev A, Smith SW. Private information

storage with logarithm-space secure

hardware. In International Information

Security Workshops. 2004; 199–214p.

14. Iliev A, Smith SW. Protecting client

privacy with trusted computing at the

server. IEEE Security & Privacy. 2005;

3(2): 20–8p.

