

JoASP (2014) 3-6 © STM Journals 2014. All Rights Reserved Page 3

Journal of Advances in Shell Programming

Volume 1, Issue 3

www.stmjournals.com

An Introduction of Smart Self-learning Shell

Programming Interface

Ankush Rai*
Department of Applied Science, CRIAD Laboratories, Smiriti Nagar, Bhilai, Chhattisgarh, India

Abstract
To manage computer systems, the command line interfaces are heavily in use by

computer administrators. Therefore, such tasks require a prerequisite know-how of the

programming interface. Often, such tasks desired for automation requires repetitive
coding and heavy interdependencies on certain logical input-output co-relation. Due to

this criticality it is required that such automation of system administration jobs are often

supervised manually. This paper presents an intelligent programming interface to help in
jobs of automating system administration by fast paced coding with adaptive level

learning and simultaneously supervising the procedural execution in logically multi-
relational basis.

Keywords: Automation, Shell programming, intelligent interface

*Author for Correspondence E-mail: ankushressci@gmail.com

INTRODUCTION
Past study had shown the command-line

interface is among the high rise tool

availability for system administrator for

automating the management, scheduling and

troubleshooting [1]. As, command line

interface has several advantages offers the

following advantage for dynamic work flow

environment:

1. It allows automate the task, when

performing the same procedures multiple

times across the cluster of machines.

2. It reduced the downtime of errors, which

was once accomplished manually.

3. It preserves the knowledgebase to remain

organizational for easy readability and

execution.

4. Finally, it allows easy sharing of

knowledge and shell commands with the

colleagues.

It has drawbacks, which have been highlighted

in the increasing computing era. The cost of

authoring shell scripts are often too high and

requires way more programming knowledge.

Additionally, the same old scripts have been

handed over and over gained without fully

knowing what it accomplishes in certain

number of steps; which makes it a daunting

task to optimize. Also, the time and effort

invested in diagnosing failures for automation

in scripting is prohibitive. This paper

demonstrates a smart learning algorithm based

shell programming interface to overcome such

problems in practice. It is an evolving system

which learns sets of procedures from human-

generated examples, and refined its behavior

based on multiple relations between inputs

outputs with that of the execution time using a

sequenced cascaded neural network. Though

using version space algebra; few handful work

is already been accomplished [2–4]. The

system was based on user feedback, while ours

is independent of it.

METHODOLOGY: IMPLEMEN-

TATION OF SMART SHELL
The shell scripting jobs for a system

administrator for bringing changes to a server

usually involve the following usual

procedures:

• Begin the process on the server to make a

note of the port number it chooses.

• Run the suite for test and pass its port

number as an argument.

• Use a process in the given listing to

determine the id of the server’s process.

• Dispatch the kill signal to the server using

its process id.

mailto:ankushressci@gmail.com

Introduction of Smart Self-learning Shell Programming Ankush Rai

JoASP (2014) 3-6 © STM Journals 2014. All Rights Reserved Page 4

Now, with the smart interface based on the

proposed smart shell scripting algorithm

(SSSA); the developer can use it to

automatically, build a test harness for such

repetitive task. From the developer we have

the segmented process and labelled test

conditions to begin the training of the

proposed test suite; it is required to frame up

an adaptive algorithm to code feature

conditions and its process orientation or

ordering. Therefore, we use the cascaded

neural networks for the same. To form an

associative pattern between the neighboring

sets of process blocks with the varying

condition through the cascaded coding of

training sets which requires three vectors:

(a) Bit rate of transmitting the displacement

vector field.

(b) Bit rate for sequencing connectomes of

information tree.

(c) The error rate in learning.

Given the segmented process sets 𝑃𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

is given as: (𝑥1, 𝑦1), (𝑥2, 𝑦2), …, (𝑥𝑙 , 𝑦𝑙)∈
𝑃𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 × [1,0]. Let 𝑣𝑖𝜖𝑉 be the set of

displacement vectors for each of the

neighboring nodes 𝑛𝑖. Such nodes represent

the positioning of the feature sets. Therefore,

in order to sequence the process from the

reconstructed sequencing scheme we use the

following SSSA algorithm.

Algorithm: Smart Shell Scripting Algorithm (SSSA)

Input:(𝑥1, 𝑦1), (𝑥2, 𝑦2), …,(𝑥𝑖, 𝑦𝑗)∈ 𝑃𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, where x is the labelled operations and y is the

conditions.

Output: 𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒(𝑖, 𝑗)

Step 1: while l≤min (∑ 𝐷(𝑣𝑖, 𝑛𝑖)𝑁
𝑖=1) //D is the associative vector

Step 2: Evaluate the feasible value of target nodes𝑅𝑡𝑎𝑟𝑔𝑒𝑡:

𝑅𝑡𝑎𝑟𝑔𝑒𝑡 = ∑ 𝐷(𝑣𝑖, 𝑛𝑖)

𝑁

𝑖=1

Step 3: Create target vectors for feasible neighboring nodes:

 Loop: for 1 to 𝑛𝑖

∑ 𝑅(𝑣𝑖, 𝑛𝑖)

𝑁

𝑖=1

≤ 𝑅𝑡𝑎𝑟𝑔𝑒𝑡

Step 4: Using Lagrange multiplier 𝜆 for the activation function of the cascaded neural network:

𝐶𝐶(𝑖, 𝑗) = ∑ ∑ 𝑠𝑔𝑛(𝐷(𝑣𝑖, 𝑛𝑖) + 𝜆𝑅(𝑣𝑖 , 𝑛𝑖))

𝑛

𝑗=1

𝑚

𝑖=1

end for loop

end while loop

Step 5: END PROCESS

The playback loop for redundant task

continues on the next steps in the procedure,

running the described SSSA test suite and

bringing up a process listing shown in the

Figure 1 below. The command for the kill

operation requisite in the subsequent steps

requires as its no argument, as the process id

of the sequence of states previously generated

in SSA for a currently-running server, which

was printed out as a result of the process

command is executed primitively. In this case,

the proposed smart shell guesses about what

the user required to run the command, using

the labelled correct process id from the

training sets. Though it has shown some major

decision capability despite the fact that; when

we had recorded the procedure and made the

user to kill 675 process though it killed 20002

unnecessary process to make system fluent in

port-port communication.

Journal of Advances in Shell Programming
Volume 1, Issue 3

JoASP (2014) 3-6 © STM Journals 2014. All Rights Reserved Page 5

Fig. 1: SSSA Version Space Depicting where the Bowtie Symbol Represents Adjoining of the Version

Space whereas the Union Symbol Indicates a Version Space Union.

CONCLUSION
Our work with the implementation of smart

shell algorithm to automate a system has

brought us near to formulate several desiderata

for artificial intelligence as Autonomous Data

Processors; which incorporates and assembles

the human input and enable automation or job

scheduling which requires no user to take over

Introduction of Smart Self-learning Shell Programming Ankush Rai

JoASP (2014) 3-6 © STM Journals 2014. All Rights Reserved Page 6

the control at certain specific critical points

during the execution of the learned process. In

summary, we have showed an implementation

of self-learning scripts.

REFERENCES
1. Kandogan E., Maglio P. P. Why don’t

You Trust Me Anymore? Or the Role of

Trust in Trouble Shooting Activities of

System Administrators. In CHI 2003

Workshop: System Administrators are

Users.

2. Lau T., Wolfman S. A., Domingos P., et

al. Programming by Demonstration using

Version Spacealgebra. Mach Learn 2003;

53(1-2): 111–156p.

3. Lau T., Domingos P., Weld D. S. Version

Space Algebra and its Application to

Programming by Demonstration. In

Proceedings of the Seventeenth

International Conference on Machine

Learning, 2000, 527–534p.

4. Mitchell T. Generalization as Search. Artif

Intell 1982; 18: 203–226p.

