Open Access Open Access  Restricted Access Subscription Access

Homogeneous geodesics on the solvable homogeneous principal bundles

Dr. Reza Chavosh Khatamy

Abstract


Let $M=G/K$ be a homogeneous differentiable manifold .We consider the
homogeneous bundle $\Im=(G,\pi,G/K,K)$
and the tangent bundle $\tau_{G/K}$ of $M=G/K$. Let $G$ be a connected Lie group and $K$
a closed subgroup of $G$. We take the Lie algebras $\cal{G}$ and
$\cal{K}$ of $G$ and $K$ respectively and define $\xi=(G\times_{K}
\cal{ G} / \cal {K}, \rho_{\xi}, \emph{G} / \emph{K},\cal {G} /
\cal {K})$ to be the bundle associated with $\Im$. We consider
that $ \xi$ is strongly isomorphic to tangent bundle
$\tau_{G/K}=(T_{G/K},\pi_{G/K},G/K, {\textbf{R}}^{m})$ .\\

In this paper we take $G$ be a solvable Lie group and prove some
results about the existence of homogeneous geodesics and geodesic
vectors on the fiber


Keywords


Associated bundle, homogeneous manifold, solvable Lie group, homogeneous vector

Full Text:

PDF

References


item R. Chavosh Khatamy, M. Toomanian, {em Existence of homogeneous vectors on the fiber space of

the tangent bundle }, Acta Mathematica Hungarica, 116, (4),

(2007), 285-294.

item M. P. Do Carmo, emph{Riemannian geometry }, Brikh"{a}user,

secend printing, (1993).

item V. V. Gorbatsevich, A. L. Onishchik and E. B. Vinberg, {em Foundation of Lie theory and Lie transformation groups,}

Springer-Verlag, (1997).

item W. Greub, S. Halperin, and R. Vanstone, {em Connections, curvature, and

cohomology}, Academic Press, Vol. I, II, (1973).

item J. E. Humphreys, {em Introduction to Lie algebras and representation theory,}

Springer-Verlag, (1972).

item V. V. Kajzer, emph{Conjugate points of left-invarian metrices on Lie groups,}

Sov. Math. 34 (1990), 32-44 (translation from Izv. Vyssh. Uchebn.

Zared. Math, 342 (1990), 27-37).

item A. Knapp, {em Representation theory of semisimple groups,}

, Princeton Univ. Press, (1986).

item S. Koboyashi, and K. Nomizu, {em Foundation of diffential

geometry}quad Interscience Publishing, New York, Vol. I,II,

(1963,1969).

item O. Kowalski and J. Szenthe, {em On the existence of homogeneous geodesics in homogeneous Riemannian manifolds,}

Geometriae Dedicata, 84 (2001), 331-332.

item O. Kowaski, S. Nikv{c}evi'{c},and Z. Vl'{a}v{s}ek, emph{Homogenuos geodesics in homogeneous

Riemannian manifolds (exampeles), } Geometry and topology of

submanifolds, Beijing/Berlin, World Sci. Publishing Co., 1999,

River Edge., NJ (2000), 104-112.

item O. Kowalski and L. Vanhecke, {em Riemannian manifolds with homogeneous geodesics,}

Bull. Un. Math. Ital., 5 (1991), 184-246.

item O. Kowalski, {em Generalized symetric spaces }, Lecture nots

in Math. Springer-Verlag, no.805, 1980.

item K. Nomizu, {em Invariant affine connections on homogeneous

spaces,}quad Amer. J. Math., 76 (1954), 33-35


Refbacks

  • There are currently no refbacks.


This site has been shifted to https://stmcomputers.stmjournals.com/